Accelerate to discover

Back to filter

Related topics

Theranostics: From Mice to Men and Back

MOLECUBES

Jun 25, 2024

Recorded webinar
Presenters: Prof. Dr. Ken Herrmann and Prof. Dr. Katharina Lückerath – Moderator: Hannah Notebaert

Orion 2024 AACR poster: 17-plex single-step stain and imaging of cell Lung Carcinoma

RareCyte

Jun 21, 2024

RareCyte Orion is a benchtop, high resolution, whole slide multimodal imaging instrument. A combination of quantitative...

Hypoxia in the Tumor Immune Microenvironment (TIME)

Bruker Biospin

Jun 6, 2024

Thursday, 11 July 2024, 16:00 CET | 10:00 EST
Zaver M. Bhujwalla, PhD...

X-RAD 320 for irradiation therapy during quantifying study for in vivo collagen reorganization

Precision X-Ray

Jun 5, 2024

Quantifying in vivo collagen reorganization during immunotherapy in murine melanoma with second harmonic generation...

Jul 3, 2024

Use of MRI and microCT to evaluate gene therapy for the treatment of discogenic back pain

Bruker Biospin

Jun 4, 2024

MRI images were obtained using the 9.4T Bruker BioSpec system, equipped with 40 mm 1H quadrature volume resonator, and...

Exosome-Mediated Delivery of Small Molecules, RNA & DNA for Development of Novel Cancer Therapeutics

Spectral Instruments Imaging

Jun 3, 2024

Disha Moholkar of University of Louisville's Gupta Lab
Tuesday, June 11, 2024, 6:30 PM
...

Emulate in vivo conditions – introduce shear flow to your experiments with BioFlux system

Cell Microsystems

May 27, 2024

Most research is still conducted in vitro without the presence of flow. We use the BioFlux System to give you the...

Jul 3, 2024

High-frequency Ultrasound System For Preclinical Imaging

S-Sharp

May 13, 2024

The Prospect T1 is an innovative high-frequency ultrasound system designed specifically for in vivo preclinical imaging...

Show all topics (10)

Insulin receptor substrate 1 is a substrate of the Pim protein kinases

May 18, 2020

The Pim family of serine/threonine protein kinases (Pim 1, 2, and 3) contribute to cellular transformation by regulating glucose metabolism, protein synthesis, and mitochondrial oxidative phosphorylation. Drugs targeting the Pim protein kinases are being tested in phase I/II clinical trials for the treatment of hematopoietic malignancies. The goal of these studies was to identify Pim substrate(s) that could help define the pathway regulated by these enzymes and potentially serve as a biomarker of Pim activity. To identify novel substrates, bioinformatics analysis was carried out to identify proteins containing a consensus Pim phosphorylation site. This analysis identified the insulin receptor substrate 1 and 2 (IRS1/2) as potential Pim substrates.

Experiments were carried out in tissue culture, animals, and human samples from phase I trials to validate this observation and define the biologic readout of this phosphorylation. Our study demonstrates in both malignant and normal cells using either genetic or pharmacological inhibition of the Pim kinases or overexpression of this family of enzymes that human IRS1S1101 and IRS2S1149 are Pim substrates. In xenograft tumor experiments and in a human phase I clinical trial, a pan-Pim inhibitor administered in vivo to animals or humans decreased IRS1S1101 phosphorylation in tumor tissues. This phosphorylation was shown to have effects on the half-life of the IRS family of proteins, suggesting a role in insulin or IGF signaling. These results demonstrate that IRS1S1101 is a novel substrate for the Pim kinases and provide a novel marker for evaluation of Pim inhibitor therapy.

Do you want to learn more? Read the whole article!

Scientific paper
Application

Get more info

Miroslav Vecheta

Support specialist

Miroslav

Vecheta

+420 210 323 421

Send Message

Brand profile

Spectral Instruments Imaging

Spectral Instruments Imaging manufactures instruments for preclinical optical (bioluminescent, fluorescent) and X-ray imaging.

Related products

System for individual researchers and smaller specialist teams to conduct optical imaging studies in disease model progression, response to therapy, and cell migration in-vivo.

show detail

The Ami HT and Ami HTX (includes X-Ray imaging) optical imaging systems establish a new, high throughput benchmark for in vivo imaging suitable for specialist researchers and small teams.

show detail

The Lago and X‐Ray capable Lago X optical imaging systems provide a powerful and flexible in-vivo imaging capability suitable for imaging cores, specialist researchers and small teams, delivering an unmatched 10 mouse capacity across BLI, FLI and X‐Ray.

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey