Accelerate to discover

Back to filter

Related topics

Automatic, Real Time Acquisition of Bioluminescent Kinetic Curves

Spectral Instruments Imaging

Jun 27, 2024

Watch this pre-recorded webinar with Dr. Andrew Van Praagh to learn how our new Aura software feature —Kinetics—...

Theranostics: From Mice to Men and Back

MOLECUBES

Jun 25, 2024

Recorded webinar
Presenters: Prof. Dr. Ken Herrmann and Prof. Dr. Katharina Lückerath – Moderator: Hannah Notebaert

Orion 2024 AACR poster: 17-plex single-step stain and imaging of cell Lung Carcinoma

RareCyte

Jun 21, 2024

RareCyte Orion is a benchtop, high resolution, whole slide multimodal imaging instrument. A combination of quantitative...

New release now available: Cytek Amnis AI v3.0 Software

Cytek Biosciences

Jun 17, 2024

The new Cytek Amnis AI v3.0 image analysis software features an integrated transfer learning algorithm, an option to...

Jul 3, 2024

Cytek webinar: Imaging Flow Cytometry for Chromosomal Assessment in Hematological Malignancies

Cytek Biosciences

Jun 7, 2024

In this webinar, we will describe a new innovative approach we developed that resolves these limitations. The method...

Hypoxia in the Tumor Immune Microenvironment (TIME)

Bruker Biospin

Jun 6, 2024

Thursday, 11 July 2024, 16:00 CET | 10:00 EST
Zaver M. Bhujwalla, PhD...

X-RAD 320 for irradiation therapy during quantifying study for in vivo collagen reorganization

Precision X-Ray

Jun 5, 2024

Quantifying in vivo collagen reorganization during immunotherapy in murine melanoma with second harmonic generation...

Jul 3, 2024

Use of MRI and microCT to evaluate gene therapy for the treatment of discogenic back pain

Bruker Biospin

Jun 4, 2024

MRI images were obtained using the 9.4T Bruker BioSpec system, equipped with 40 mm 1H quadrature volume resonator, and...

Show all topics (10)

Predicting single-cell gene expression with imaging flow cytometry data and machine learning

Aug 10, 2021

Luminex introduced IFC-seq, a machine learning methodology for predicting the expression profile of every cell in an imaging flow cytometry experiment. Since it is to-date unfeasible to observe singlecell gene expression and morphology in flow, we integrate uncoupled imaging data with an independent transcriptomics dataset by leveraging common surface markers. We demonstrate that IFC-seq successfully models gene expression of a moderate number of key gene-markers for two independent imaging flow cytometry datasets: (i) human blood mononuclear cells and (ii) mouse myeloid progenitor cells. In the case of mouse myeloid progenitor cells IFC-seq can predict gene expression directly from brightfield images in a label-free manner, using a convolutional neural network. The proposed method promises to add gene expression information to existing and new imaging flow cytometry datasets, at no additional cost.

Learn more

Technical breakthrough
Application
Meet us
Video
Webinar

Related technologies: Imaging flow cytometry

Get more info

Riccardo Pasculli

Head of application support

Riccardo

Pasculli

+420 731 127 717

Send Message

Brand profile

Luminex

Luminex offer a comprehensive range of innovative flow cytometers, including the Imaging flow cytometers.

Related products

Combine the speed and statistical power of flow cytometry with microscopy

show detail

Flow cytometer capable of high resolution microscopic assays

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey