Accelerate to discover

Back to filter

Related topics

Automatic, Real Time Acquisition of Bioluminescent Kinetic Curves

Spectral Instruments Imaging

Jun 27, 2024

Watch this pre-recorded webinar with Dr. Andrew Van Praagh to learn how our new Aura software feature —Kinetics—...

Theranostics: From Mice to Men and Back

MOLECUBES

Jun 25, 2024

Recorded webinar
Presenters: Prof. Dr. Ken Herrmann and Prof. Dr. Katharina Lückerath – Moderator: Hannah Notebaert

Orion 2024 AACR poster: 17-plex single-step stain and imaging of cell Lung Carcinoma

RareCyte

Jun 21, 2024

RareCyte Orion is a benchtop, high resolution, whole slide multimodal imaging instrument. A combination of quantitative...

New release now available: Cytek Amnis AI v3.0 Software

Cytek Biosciences

Jun 17, 2024

The new Cytek Amnis AI v3.0 image analysis software features an integrated transfer learning algorithm, an option to...

Jul 3, 2024

Cytek webinar: Imaging Flow Cytometry for Chromosomal Assessment in Hematological Malignancies

Cytek Biosciences

Jun 7, 2024

In this webinar, we will describe a new innovative approach we developed that resolves these limitations. The method...

Hypoxia in the Tumor Immune Microenvironment (TIME)

Bruker Biospin

Jun 6, 2024

Thursday, 11 July 2024, 16:00 CET | 10:00 EST
Zaver M. Bhujwalla, PhD...

X-RAD 320 for irradiation therapy during quantifying study for in vivo collagen reorganization

Precision X-Ray

Jun 5, 2024

Quantifying in vivo collagen reorganization during immunotherapy in murine melanoma with second harmonic generation...

Jul 3, 2024

Use of MRI and microCT to evaluate gene therapy for the treatment of discogenic back pain

Bruker Biospin

Jun 4, 2024

MRI images were obtained using the 9.4T Bruker BioSpec system, equipped with 40 mm 1H quadrature volume resonator, and...

Show all topics (10)

Real-time monitoring of adverse effects on cardiomyocytes derived from Embryonic Stem Cells

Nov 3, 2016

Up to now, the pre-clinical analysis of all these parameters has been hampered by the lack of both (1) a standardized, pure cardiac cell and tissue model to monitor cardiac-specific toxicity and (2) a suitable technology-platform for continuous, label-free analysis of cell function and integrity. These impediments are now addressed by the xCELLigence Real-Time Cell Analyzer (RTCA) System, in combination with pure cardiomyocytes generated from mouse embryonic stem cells.

To predict the pharmacological and toxicological effects of a drug, scientists use either recombinant cell systems such as cell lines expressing specific ion channels or primary cardiomyocytes prepared from, for example, neonatal rats. The disadvantages of these systems are that recombinant cell lines lack the physiological ion channel environment and functional humoral regulation. Freshly isolated primary cardiomyocytes, although showing physio-logical properties, are costly and time consuming to produce and difficult to standardize. Furthermore, the possibility of contamination with other cell types increases the variability of data and reduces the reliability of test results.

Read more

Scientific paper
Application
Product news

Related technologies: Real-time, label free cell analysis

Get more info

Riccardo Pasculli

Head of application support

Riccardo

Pasculli

+420 731 127 717

Send Message

Brand profile

Agilent technologies

Agilent provides xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.

Related products

Cardio Instrument is a high-resolution system for label-free-dual-mode monitoring of cardiomyocyte and cardiotoxicity testing

show detail

The new CardioECR system combines impedance and Multi Electrode Array (MEA) technology with a pacing function

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey